Будущее влияет на прошлое? Учёные подтвердили мысленный квантовый эксперимент Уилера на примере отдельных атомов

В исследовании поведения квантовых частиц учёные из Австралийского национального университета подтвердили, что квантовые частицы могут вести себя настолько странно, что кажется, будто они нарушают принцип причинности.

Этот принцип — один из фундаментальных законов, который мало кто оспаривает. Хотя многие физические величины и явления не меняются, если мы обратим время вспять (являются Т-чётными), существует фундаментальный эмпирически установленный принцип: событие А может влиять на событие Б, только если событие Б произошло позже. С точки зрения классической физики — просто позже, с точки зрения СТО — позже в любой системе отсчёта

В физике путешествие в прошлое обычно связано с путешествием быстрее скорости света, а с этим пока было всё спокойно.

Кроме одного момента — квантовой физики. Там вообще много странного. Вот, например, классический эксперимент с двумя щелями. Если мы поместим препятствие со щелью на пути источника частиц (например, фотонов), а за ним поставим экран, то на экране мы увидим полоску. Логично. Но если мы сделаем в препятствии две щели, то на экране мы увидим не две полоски, а картину интерференции. Частицы, проходя сквозь щели, начинают вести себя, как волны, и интерферируют друг с другом (взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга).

Чтобы исключить возможность того, что частицы на лету сталкиваются друг с другом и оттого не рисуют на нашем экране две чёткие полосы, можно выпускать их поодиночке. И всё равно, через какое-то время на экране нарисуется интерференционная картина. Частицы волшебным образом интерферируют сами с собою! Это уже гораздо менее логично. Выходит, что частица проходит сразу через две щели — иначе, как она сможет интерферировать?

А дальше — ещё интереснее. Если мы попытаемся понять, через какую всё-таки щель проходит частица, то при попытке установить этот факт частицы мгновенно начинают вести себя, как частицы и перестают интерферировать сами с собою. То есть, частицы практически «чувствуют» наличие детектора у щелей. Причём, интерференция получается не только с фотонами или электронами, а даже с довольно крупными по квантовым меркам частицами. Чтобы исключить возможность того, что детектор каким-то образом «портит» подлетающие частицы, были поставлены достаточно сложные эксперименты.

Физик Джон Уилер предложил в конце 70-х мысленный эксперимент, который он назвал «эксперимент с отложенным выбором». Рассуждения его были просты и логичны.

Хорошо, допустим, что фотон каким-то неведомым способом узнаёт, что его будут или не будут пытаться обнаружить, до подлёта к щелям. Ведь ему надо как-то определиться — вести себя, как волна, и проходить через обе щели сразу (чтобы в дальнейшем уложиться в интерференционную картину на экране), или же прикинуться частицей, и пройти только через одну из двух щелей. Но ему это нужно сделать до того, как он пройдёт через щели, так ведь? После этого уже поздно — там либо лети, как маленький шарик, либо интерферируй по полной программе.

Так давайте, предложил Уилер, расположим экран подальше от щелей. А за экраном ещё поставим два телескопа, каждый из которых будет сфокусирован на одной из щелей, и будет реагировать только на прохождение фотона через одну из них. И будем произвольным образом убирать экран после того, как фотон пройдёт щели, как бы он их ни решил проходить.

Если мы не будем убирать экран, то по идее, на нём всегда должна быть картина интерференции. А если мы будем его убирать — тогда либо фотон попадёт в один из телескопов, как частица (он прошёл через одну щель), либо оба телескопа увидят более слабое свечение (он прошёл через обе щели, и каждый из них увидел свой участок интерференционной картины).

В 2006 году прогресс в физике позволил учёным поставить такой эксперимент с фотоном на самом деле. Выяснилось, что если экран не убирают, на нём всегда видна картина интерференции, а если убирают — то всегда можно отследить, через какую щель прошёл фотон. Рассуждая с точки зрения привычной нам логики, мы приходим к неутешительному выводу. Наше действие по решению, убираем мы экран или нет, влияло на поведение фотона, несмотря на то, что действие находится в будущем по отношению к «решению» фотона о том, как ему проходить щели. То есть, либо будущее влияет на прошлое, либо в интерпретации происходящего в эксперименте со щелями есть что-то в корне неправильное.

Австралийские учёные повторили этот эксперимент, только вместо фотона они использовали атом гелия. Важным отличием этого эксперимента является тот факт, что атом, в отличие от фотона, обладает массой покоя, а также разными внутренними степенями свободы. Только вместо препятствия со щелями и экрана они использовали сетки, созданные при помощи лазерных лучей. Это дало им возможность сразу же получать информацию о поведении частицы.

Как и следовало ожидать (хотя, с квантовой физикой вряд ли стоит что-то ожидать), атом повёл себя точно так же, как фотон. Решение о том, будет или нет существовать на пути атома «экран», принималось на основании работы квантового генератора случайных чисел. Генератор был по релятивистским меркам разделён с атомом, то есть никакого взаимодействия между ними быть не могло.

Получается, что отдельные атомы, имеющие массу и заряд, ведут себя точно так же, как отдельные фотоны. И пусть это не самый прорывной в квантовой области опыт, но он подтверждает тот факт, что квантовый мир совсем не такой, каким мы можем его себе представлять.

via

Комментирование и размещение ссылок запрещено.

Обсуждение закрыто.

Top